
00 
CO 

V 
"-->•  THE SYNTHESIS OF TERNARY FUNCTIONS UNDER FIXED POLARITIES AND TERNARY I2L CIRCUITS 

X.  Chen and X.  Wu 

/ 

Department of  Physic«,  University of Hangzhou,  Hangzhou, 
Peoples1 Republic of China 

Abstract 

This paper discusses the expansion of multlple- 
f. „A value functions based upon awdulo-algebra and 
^'i' Kronecker product. A transform algorithm of the 

expansion coefficients of various polarities, and 
their minimisation are proposed. Ternary function 
realizations using I2L technology are finally con- 
sidered. 
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List of Symbols 

n:  number of Independent variables 
Xj.i • 0 to n-l.Xj^ c {0,1,2}:  Independent Input 

variables 
f ("n-iv • >

X
I>
X
CP • at>brevlated to f(x):  function of 

the x1 Input variables, f(x) e {0,1,2} 
x^ + xj! arithmetic sum of x^ and x* 
xl ® Xj: mod-3 addition of x^ and xj 
x^.Xj! mod-3 multiplication of xi and x^ 
1^,1 • 0 to n-ll  various polarities of variable Xj 

Xji 
_B 

Xi © 1 
X! © -. 

complement operation on variable x^, 

B   (B - Xi If B > Xf 

otherwise. 
xl lo 

x^ A xj: minimum of xj and x< 
x^ V xj:  maximum of xj and xj 

(x1 V x ) If B > Xj^ V Xj 
XI :  complement of maximum of x^ and Xj, 

to otherwise 

Uf(a,ß,Y,x):  Universal-logic-module for ternary 
functions, based upon Reed-Muller expansion, 
i.e. aodulo-algebra expansion 

Uh(c,n,x): basic Universal-logic-module for ter- 
nary function«, based upon modulo-algebra ex- 
pansion uh(5,n,x) - t ® n x 

F]: column vector whose entries are the 3n values 
of f(x), arranged in Increasing order of y, 

n-1 
y- I x^1 

1-0 
LgCK)]:  coefficient column vector based upon 

modulo-algebra expansion under the polarity 
kn-ltn-l •••Ml^ k0i0' wh,ra K>L *" the 

decimal «xpresalon« of k^i»..^!^, l^-x 
... li<o> respectively 

®  [AJ  ®  [AoI 

[Pt). 

[T]: transform matrix from B) to F) 

[T]  : transform matrix from F] to B] 
0 ; Kronecker product 
n-1 
©[AJ:  - (An.!)  ®  ., 

transform matrix of expansion coefficients 
when x ♦ x @ k 

[*I): transform matrix of expansion coefficients 
when x ♦ (t + l)x 

1P].(T): product of matrices over GF(3) 

Introduction 

Several modulo-algebra expansions of multiple- 
valued functions have been proposed [l]-(3]. 
Lately the modulo-algebra expansion of multiple- 
valued functions over Galois field with q numbers, 
where q Is a prime number or a power of a prime 
number, has been investigated [A|. We will discuss 
the transform between F] and the Reed-Muller expan- 
sion coefficient column matrix B), and also among 
various B(K)] under different polarities in section 
2 by means of the Kronecker product. Minimal 
modulo-algebra expansion for ternary functions 
under fixed polarities is further considered. 

According to the modulo-algebra expansion, a 
Universal-logic-module Uf can be Introduced (5), 
where 

Uf(o,B,Y.x) - a © Bx © Y x2 (1) 

It has been shown that any ternary function may be 
realized by the use of only this kind of module. 
Here in section 3 it will be shown that such a 
Universal-logic-module Uf(a,0,YiX) can be composed 
of two basic Universal-logic-modules Uh(C,n.x), 
where Uh(C,n>x) ■ t   ®   n «• 

The realization of multiple-valued functions using 
I2L circuits can be found published [6],[7]. In 
section 4 a number of further I2L circuits realiz- 
ing ternary functions are presented. 

Modulo-algebra Expansion of Multiple-Valued 
functlona under fixed polarities 

It Is   well   known   that   a   single-variable   ternary 
function can be written as: 

f(x) - b     ©   b x   ©   b x2 

0 1 2 
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Define F] as a column vector of a function f, at 
previously defined. Define B] as the Reed-Muller 
coefficient column vector for f based upon oodulo- 
algebra expansion. Define [T] as transform matrix 
from B] to F). 

For a single variable, we have: 

Fl - f f f It (2) 
0 12 

where f ,f ,f2 correspond to f(0) ,f (1) ,f (2) and 

f(0) bü- 

feu - bg^bj®^, 
f(2) - b0@2b1®b2 
B] - b b b F 

0 12 

F) - [Tl.B) 

00 

10 

20 

01 

11 

21 

^ 

02 
b 

0 

12 •bl 

22 b2 
mm 

(3) 

(A) 

(5) 

Substituting equation (3) into (2), and comparing 
the result with (5), the transform matrix nay be 
obtained: 

IT] 

10 0 

1  1 1 

1 2 1 

(6) 

The Inverse transform [T]  is termed transform 
matrix from F] to B]: 

B) -(T)' F) (7) 

Similarly, [T]   can be determined as follows: 

1 0 0 

IT) 
-1 

0 2 1 

2 2 2 

(8) 

Note,  both  [T]  and  (T)      here are over a single 
variable.     For  a   two-variable   ternary   function,   we 
have; 

«VV   ■   \®\*0® b2*
2o®b3Xi® Vlx0 

®Vixo2®Vi®Vi«oeV!x2    (9) 

In accordance with the Kronecker product and its 
properties, the above equation may be simplified 
to: 

«Xj.Xj) - KlXjX^Odx^l.Bl, (10) 

where ® denotes the Kronecker product. It may 
be proved that there are the following relations: 

Si 2 
FJ - (T) W  .BJ (U) 

and Bl - {(Tl"1) 
-n®2 

.FJ (12) 

where 

m®2 - IT) ®IT1 - (X3) 

K1}' [Tl" ® (if 
0 0 
0 0 
0 0 
2 0 
0 1 
1 1 

0 0 0 
0 0 0 
0 0 

0 
1 
1 
0 
1 
1 

0 0 
0 0 

0 
0 

0 0 0 
1 0 

2 
2 
0 
1 
1 

(14) 

Similarly for n-variable  ternary functions,  the 
following equations may be derived: 

f(x ,...,xi,xo) -  ® (Ixjxl) .B 

Fl - IT]®'  .Bl 

Bj-jm-H®" FJ 

(15) 

(16) 

(17) 

Recalling that the Reed-Muller expansion of a bin- 
ary function may be derived under different polar- 
ities of the input variables, the concept of vari- 
able -polarity can be Introduced In the multiple- 
valued function case as well [8,91. Consider the 
generalized modulo-algebra expansion of an 
n-varlable ternary function: 

f<W-'VV"[®oa*i*i>]-B]. 
b © b x ® b 52 i 

10    2 0 
®bn 5U..J252, 

3-1 n-1 1 0 
(18) 

where x Is defined as the polarity-expression of 
x, where It takes a different output value for each 
possible input value, i.e. there is no loss of 
information. In ternary system each variable may 
take six possible polarities, including the vari- 
able value Itself.  They are shown in Table 1. 

In the above table the entries in the left column 
are corresponding modulo-algebra expansions of var- 
ious polarity-expressions of variable **, Note 
that the last three entries are mod-3 products of 
the corresponding above entries and constant two. 
Thus a generalised equation can be obtained: 

SL - (t ® D.U, ® k) , 
1 (19) 
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»1 0 I 2 

1 ® «1 1 2 0 

2 ® Xi 2 0 1 

2«! 0 2 1 

2 0 2X! 2 1 0 

1 © 2x1 1 0 2 

Table 1 The polarities of a ternary variable xi 

k - 0,1,2 and t ■ 0,1 

Therefore there are OS)" - 6n possible n-varlable 
ternary modulo-algebra expansions. It Is said to 
be the unmodified form when: 

* - 0, k - 0 

The above transform (19) can be divided into two 
steps. The first transform is termed the k- 
transform, In which we crisider Jt - 0. The second 
transform is termed the t-transform. Now let us 
consider the k-transform. Take a single-variable 
function as an example. 

Suppose 

f(x) - b(>0   ©  bjW.I  ®   bOO.ia 

ll«2Mb(lOb(IOb(10]t 

Consider the k-transform 

x - x   0   k, k - 0,1,2 

(20) 

(21) 

If  b(0)  is   expressed   by   b,,    i.e.    b.   = b(0),   then 
the Standard   form  (k • 0, i -  0)  ma/ be   Obtained: 

f(x) - b   ©b x©b x2 

From (21)we obtain: 

(1112) - (lxx2). 

b 

(22) 

and 

(Ixx2) - (lxx2). 

1    k   k2 

0    1    2k 

0    0    1 

1    2k    k2 

0    1k 

0    0     1 

(23) 

If we define 

IM 

1    2k    k2 

0    1k 

0    0      1 

(25) 

and 

lPkl 
-1 

1 k 

0 1 

0    0 

k2 

2k 

1 

(26) 

Substituting (24)    into    (22)    and    comparing   with 
(20)! we obtain: 

B (K), lPkl.Bl 

Similarly the reverse transform is as follows: 

B] ■ [Pkl"1^10! 

For a n-variable ternary system, 3n different 
modulo-algebra expansion coefficient vectors B'

K,
1 

can be derived if each variable ^i ' x^ ®  k^ 
takes every possible value, where K is decimal 
number of ternary kg.^...^ k. , K • 0,1,...3 -1. 

The following equation may be obtained by using a 
Kronecker product and the equation (25): 

B(K)1 {• "'.'}••] (27) 

It is obvious that the complexity of the various 
modulo-algebra expansion coefficient vectors B(K)] 
of a function varies with K. The more zero-coeff- 
icients in BCO), i.e. the fewer the necessary 
product-terms in the modulo-algebra expansl n, the 
simpler the function form. 

Example 1 

Consider a two-variable ternary function expressed 
by Fig.l.  From the K-map its column vector is 

F] - 0 2 0 2 1 0 0 2 01' 

^ 0 1 t 

Fig.l 

0 0 2 0 
1 i 1 z Example 2-variable 
I 0 0 0 ternary function 

The unmodified  expansion coefficient  vector can be 
obtained from the equations (12) and (14): 

B] - 0 1 1 1 2 1 1 2 1]C 

Therefore its modulo-algebra expansion is as 
follows: 

(24) f (xj -V " xo ® X0 ^ Xl ® 2X1X0 ® Vo 

® x2 ® 2x2x0 ® x2x2 
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When ehe eight other possible polarities «re con- 
sidered, It is found thst there src the least non- 
zero coefficients when k ■ 2, It - 1, I.e. K ■ 7. 

The corresponding expansion coefficient vector can 
be derived fro« the equations (25) and (27): 

1 1 1 

0 12 

0 0 1 

® 

12 1 

Oil 

0 0 1 

• B B(7)l  - dPjlSlPjD.B)  - 

121 121 12 1 

Oil Oil Oil 

001 001 001 

000 121 212 

000 011 022 

000 001 002 

000 000 121 

000 000 011 

000 000 001 

Its corresponding   aodulo-algebra   expansion   there- 
fore is as follows: 

0 0 

1 2 

1 0 

1 0 

2 - 0 

1 0 

1 0 

2 0 

1 | 1 

£(xl,x0) - 2x0 ® §2.»2 . 

After choosing the optima K, further consider Che 
deterainacion of optlaua L. where L is the decliul 
expression of binary tn-l'*^' 'i c C0»1)« Similarly, 

we nay obtain transforas corresponding to a re- 
placeaent ofl-(t©l).x. For a single-variable 
ternary funccion, we find: 

B      ]  •  [  II.  B      ] 

B      1  - (  U     .B      ] 

where 

1*1) - ilul 

10 0 

0 1+t 0 

0     0     1 

(28) 

(29) 

It can be seen Chat the t-transfo» doe« not change 
the nuaber of non-sero coefficients, since all dia- 
gonal elements are non-sero and the others are «ero 
in ( !]. For n-vsrisble ternary funccion, we derive 

B-i «i ® riiir.B "'i 

.(K)1 

11-0 

,n-l 
(30) 

a HI- V": 

Alchough the nuaber of non-sero coefficients reaains 
unchanged, the nuaber of coefficients with value 2 
varies with different L. The fewer the nuaber of 
these coefficients, the simpler Is the corresponding 
aodulo-algebra expansion of a function. Therefore 
the optiaua procedure can be ststed as follows. 
Firstly search for the optiaal K value under the 
K-transfora so that the nuaber of non-cero coeffic- 
ients Is alniaised. Then determine Che optimal L 
value under L-cransfora so that Che nuaber of coeff- 
icients being cwo is ainiaua. It aay be seen that 
only 3n + 2n searches are necessary for any 
n-variable ternary function, against 6n exhaustive 
searches. Consider Che above Example. 1, we can 
find Che .number of coefficients is  being cwo is 
alnimuml when L - 1, i.e. I 0.  ». 1.    The 

corresponding ooefflcienc vector is: 

LgdO) .    1B(7)]    -01000000   ll1 

The corresponding aodulo-algebra expansion Is: 

f(xl.x0) - (2ii0) ® (?l)2.(2x0)2 

Note that in this case the non-sero coefficients 
of all products are of unity value. 

Universal-Logic-Modulas 

Hurst and Tokaen have disclosed a Universal-logic- 
aodule based on aodulo-algebra for a ternary system 
151: 

Uf(a,8.Y,x) - o ® Bx © Tf*2 (31) 

This aay be decomposed into smaller cells: 

Uf(a.S,Y>x) - a®Bx®YX2 - a®x(ß@ yx) - a®Uhx 

Here   Uh(C,n,x) - «   ©   nx (32) 

It is obvious that a U{(a,B>Y>x)can be realised by 
two Uh cells as shown in Fig.2. Therefore %  forms 
a complete set. The advantages using Uh are a 
simpler algebraic expression and flexibility in 
employment.  After examining all twenty-seven 
single variable ternary functions, 1c can be shown 
chat in addition Co conacants 0, 1 and 2 and vari- 
able x itself, nine of Cham aay be realised by only 
one Uh. They are: 

f^x)    - x2, (0,x) 

f6(x) - 2x, (0,2) 

f12(x)  - 1 ©x,  (1,1) 

f (x) - x ® x2, (x,x) 

f10(x) - I©x2,  (l,x) 

«15<x)   -  1 ® 2x,   (1,2) 

«j9(x)   -   2 ® x2,  (2,x)     ^j (x)   -   2  © x,   (2,1) 

—-1 
f21|(x) - 2®2x,  (2,2) 

J-t 
l~ » 

j  Fig.2    laplemencadon   of 
i |   Uf   using  cwo  Uh aodules 

427 



The values In brackets express the corresponding 
Input patterns. Note five of nine are merely 
polarities variation of variable x. They are 

fi2(x) 1® X 

2 @ 2x, 

x, f (x) - 2®x, - x, f (x) - 2x, 
21 6 

2x, f  (x) • 1 © 2x, 2?. 

Thus the various polarities of variable x can be 
realized using a single U^. 

§1 -a^T^v^n 

Realization of ternary logic using 
I2L circuits 

The basic operations In oodulo-algebra are mod-3 
addition, and mod-3 multiplication [10]. They mav 
be reduced to addition, multiplication and mod-J 
limit. Here we consider the realization of some 
ternary logic circuits. 

Polarity-transform circuits 

© 

o I x<o 

® © 

X<0 

o • t 0 
1 
2 

It 7? OS 0 
1 
1 

0 0 0 0 
1 
2 

0 1 2 

1 2 i IS Oi 0 0 0 ] 1 2 0 

12 i 4 01 0 0 0 -L 1 2 0 1 

® 
Fig.4 Mod-3 adder realisation 

(a) circuit, (b) legend, (c) K-maps 

Flgs.3(a)-(f) give various polarity-transform circ- 
uits. Fig.3(a) Is a complement circuit; Fig.3(b) Is 
a circuit for multiplication by two. Flg.3(c)-(f) 
show how other polarity-transform circuits may be 
obtained In terms of appropriate serial connection 
of the above two circuits. The function of Figs. 
3(e) and (f) Is the same, but the clccult of (e) 
Is simpler. 

Mod-3 addition 

multiplicand are expressed by using the same phys- 
ical measure, say electrical current, then the 
multiplier becomes a pure number without any phys- 
ical meaning. However, up to now any simple 
effective control of amplification In terms of 
current has not been found. In a binary system, 
this difficulty Is avoided because the operation 
of multiplication and the minimum of two variables 
0,1 Is the same. 

I 

Mod-3 adder Is shown In Fig.4. It can be seen 
that the upper branch creates arithmetic addition, 
the lower branch being a mod-3 Uralter. 

Mod-3 multiplication 

The difficulty of realizing multiplication of two 
variables consists In the physical Interpretation 
of multiplicand and multiplier.  If product and 

(Oltl 

Ä. 
(IM) 

(oiirix 

wi 

ZX'Mt 

U(M0) 

moSi 
it» 

(W^^uwr/o»)   (wSntej/owr 
(e) (di 

Mt 

(t) 

rig.3 I2L polarity-transform circuits 

We extend this Interpretation Into the ternary 
system. Fig. 5(a) Illustrates that the multi- 
plication of two variables can be divided Into two 
operations. The central K-map of Klg.5(0 denotes 
minimum of variables. I.e. x A V* Since x A y * 
xvy, this may be Implemented as shown In Flg.5(b). 
The RH K-map expresses J***?), I.e. 

j(*-y)   -j x+y-2,  lfx+y>2 

otherwise 

Flg.S(b) gives   the   total   realization.     The   upoer 
part implements x A y;  the centre realizes J(x+y), 
and the lower  Is  the mod-3 limlter.    The  functions 
of various   points     A   -   D     are   expressed   In   the 
corresponding K-maps shown in Fig.5(d). 

Arithmetic circuits 

On the bases of mod-3 addition and mod-3 multi- 
plication, full-adder and full-multiplier with 
carry may be designed. Figs.6(a) and (b) show 
their I2L circuits respectively, where C is carry 
input and C  is carry output. 

U^ circuit 

This may  be  realised by the  cascade of a mod-3 
multlpllerand a mod-3 adder, •• shown in Fig.7. 
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o T"i 
3" i T 

o 
_ « 

0 0 0 

£__!_ I 
0 I t 

0 I I 

e 
ooe 
o o I 
o T"I 

» T »A, Itttf) 

-m M 

*> 

§5=u 
te 

%5^-K 

fk^T 

id) 

»^0 12 
0 
1 

i 
L — l 
2    I 0 0 0 3 

© ® 

0    1 t 

0 2 I 

® 
Fig.5 Hod-3 Bulclpllor re«ll»«tion 

Concluglon» 

The modulo-algebra expansion of • ternary function 
has been discussed in terns of modulo-algebra and 
Kronecker product. Because of the six possible 
polarities of a ternary variable the minimitation 
of ternary functions is more complicated than that 
of the corresponding binary case. A minimization 
procedure has been suggested. Since the mod-3 
multiplier costs are high, the first step is a 
search for the optimum K to make the number of non- 
zero expansion coefficients minimum. On the basis 
of this new function, we then find the optimum L 
corresponding to the minimum number of product 
terms which have coefficients of two. Such a 
searching process can be implemented by using a 
computer search. 

A basic Unlversal-loglc-module, two of which are 
capable of realizing any single-variable ternary 
function, has also been considered. A number of 
I2L circuits realizing various ternary functions 
have been proposed. 
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